Laplace Transform Using the Henstock-kurzweil Integral

نویسنده

  • SALVADOR SÁNCHEZ-PERALES
چکیده

We consider the Laplace transform as a Henstock-Kurzweil integral. We give conditions for the existence, continuity and differentiability of the Laplace transform. A Riemann-Lebesgue Lemma is given, and it is proved that the Laplace transform of a convolution is the pointwise product of Laplace transforms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Henstock–Kurzweil Fourier transforms

The Fourier transform is considered as a Henstock–Kurzweil integral. Sufficient conditions are given for the existence of the Fourier transform and necessary and sufficient conditions are given for it to be continuous. The Riemann–Lebesgue lemma fails: Henstock– Kurzweil Fourier transforms can have arbitrarily large point-wise growth. Convolution and inversion theorems are established. An appen...

متن کامل

The distributional Henstock-Kurzweil integral and measure differential equations

In the present paper, measure differential equations involving the distributional Henstock-Kurzweil integral are investigated. Theorems on the existence and structure of the set of solutions are established by using Schauder$^prime s$ fixed point theorem and Vidossich theorem. Two examples of the main results paper are presented. The new results are generalizations of some previous results in t...

متن کامل

Henstock–Kurzweil delta and nabla integrals

We will study the Henstock–Kurzweil delta and nabla integrals, which generalize the Henstock–Kurzweil integral. Many properties of these integrals will be obtained. These results will enable time scale researchers to study more general dynamic equations. The Hensock–Kurzweil delta (nabla) integral contains the Riemann delta (nabla) and Lebesque delta (nabla) integrals as special cases.

متن کامل

Substitution Formulas for the Kurzweil and Henstock Vector Integrals

Results on integration by parts and integration by substitution for the variational integral of Henstock are well-known. When real-valued functions are considered, such results also hold for the Generalized Riemann Integral defined by Kurzweil since, in this case, the integrals of Kurzweil and Henstock coincide. However, in a Banach-space valued context, the Kurzweil integral properly contains ...

متن کامل

On Pointwise Inversion of the Fourier Transform of Bv0 Functions

Using a Riemann-Lebesgue lemma for the Fourier transform over the class of bounded variation functions that vanish at infinity, we prove the Dirichlet–Jordan theorem for functions on this class. Our proof is in the Henstock–Kurzweil integral context and is different to that of Riesz-Livingston [Amer. Math. Monthly 62 (1955), 434–437]. As consequence, we obtain the Dirichlet–Jordan theorem for f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014